
5

CONFIGURATION AND EXECUTION SUPPORT
FOR DISTRIBUTED TESTS

Theofanis Vassiliou-Gioles, Ina Schieferdecker,
Marc Born, Mario Winkler and Mang Li
GMD FOKUS, Kaiserin-Augusta-Allee 31, D-10589 Berlin

Tel. + 49 30 3463 7346, Fax + 49 30 3463 8346

email: { vassiliou I schieferdecker I born I winkler I m.li} @fokus.gmd.de

Abstract This paper presents means to test the functionality, scalability and performance of
distributed telecommunication applications based on CORBA ORBs. It presents
generic tools for testing the functionality, performance, robustness and scalability
of distributed systems. The tools cover the test suite simulator TSsim for vali
dating concurrent test suites, the TTCN/CORBA gateway TCgate for automated
execution of the test cases (including a generic coder/decoder component), and
the test manager Timan to setup and parameterize the test configuration and
to control the test execution. The emphasis of this paper is on Timan and its
scripting facilities. Exemplarily, a TINA access session which is part of the
TINA platform developed by GMD FOKUS is considered.

Keywords: Distributed Tests, Test Scripting, TINA, TSPl

1. MOTIVATION
Due to the highly increasing complexity of new telecommunication ser

vices and the need for more scalable and manageable as well as flexible,
run-time configurable execution environments for telecommunications services
(telecommunication platforms) new technologies for such platforms are needed.
Current telecommunication platforms are mostly based on intelligent networks
(IN) technology and do not meet the new requirements any more. In the last few
years a lot of research efforts have been made in the research labs all over the
world to find new solutions to fit the new requirements of today's telecommu
nication market. The next generation of telecommunication platforms is based
on distributed object technology - a key enabling factor for future telecom-

61

G. Csopaki et al. (eds.), Testing of Communicating Systems
© Springer Science+Business Media New York 1999

62 TESTING OF COMMUNICATING SYSTEMS

munication systems. In order to define a general framework for all kinds of
telecommunication and information retrieval services based on distributed ob
ject technology most of the large telecommunication companies in all over the
world founded the Telecommunications Information Networking Architecture
Consortium (TINA-C). Technologically, TINA systems can be implemented
on top of Object Request Brokers (ORB) of OMG CORBA.

This paper presents means to test the functionality, scalability and perfor
mance of distributed telecommunication applications based on CORBA ORBs.
It presents generic tools for testing the functionality, performance, robustness
and scalability of distributed systems. Exemplarily, a TINA access session
which is part of the TINA platform developed by GMD FOKUS is considered.
The test tools allow to start and configure any number of TINA test clients
simultaneously on any network node and to collect the results of them after the
tests have been finished.

RM-ODP describes principles for conformance assessments of ODP speci
fications and implementations so that implementations of different vendors can
intemperate. These conformance assessments made in RM-ODP are essential
and the testing of the implementations has to be performed for increasing the
probability that applications can operate in the environment and intemperate
with each other. Depending on the objectives of testing, distributed applica
tions can be tested with a local or distributed test configuration. Looking at
networking testing similar issues can be identified. For example, if the routing
capabilities of a network has to be tested, access to the network at the remote
side is needed. The distribution of the test components to the remote side can
give the desired access.

In the area of Open Systems Interconnection (OSI) protocols, the Confor
mance Testing Methodology and Framework (CTMF) is well established and
widely used. It is defined in the multipart standard IS 9646 [8]. CTMF was
not aimed at describing tests for distributed systems but rather for OSI commu
nication protocols. Although multiple upper and lower testers are supported,
one assumption in CTMF is that the Implementation Under Test (IUT) is not
distributed. This leads to the fact that the test coordination procedure needed
between the several testers are not explicitly specified. However, concurrent
TTCN (C-TTCN) which enables the use of independent and concurrent test
components (TC) in a test description, gives direct raise to distributed test
setups. A Main Test Component (MTC) communicates with Parallel Test
Components (PTC) over Coordination Points exchanging Coordination Mes
sages (CM). C-TTCN gives convenient means to describe abstract tests for
distributed systems, however, distributed test setups and the synchronization of
distributed test components are subject of current research.

The paper is structured as follows: Section 2. discusses synchronization
aspects for distributed test components, gives an overview on the Test Syn-

Configuration and Execution Support for Distributed Tests 63

Testing Device

• Means of Testing

I MTC I Main Test Component

8 Parallel Test Component

PCO

Figure 1 Generic Distributed Test Architecture

chronization Protocol TSPI and describes an implementation of TSPI called
Timan. Section 3. identifies shortcomings of TTCN test suites in terms of
dynamic test case selection and test group verdict assignments and proposes a
solution to this: the Test Session Specification Language TSSL. In Section 4.
an application example (a TINA Access Session) is described: its conformance
tests are defined in C-TTCN and their execution make use of Timan and TSSL.
Conclusions finish the paper.

2. A TEST MANAGER FOR DISTRIBUTED TESTING
Testing distributed applications results in general in distributed test setups,

where test components have to be distributed to gain access at the remote ends
of the tested application. The distribution of the test components is also needed
because they should not influence each other - this cannot be guaranteed if the
amount of test components becomes too high on a single node, what is e.g. of
particular importance for performance tests. The test system in a distributed
test context itself forms a distributed application which has to be managed.

Figure I presents the generic configuration of a distributed test system. A
distributed test is realized by a set of parallel test components performing
the individual test behaviour such as e.g. the emulation of client behaviour
for a service under test, and by a main test component, which controls and
coordinates the other parallel test components. Every test component and the
test manager, i.e. every test entity, may reside on a separate tester. No resource
sharing except of sharing of communication links can take place.

Therefore, two synchronization aspects have to be covered in a distributed
test setup: time and functional synchronization. Between and during the
execution of test cases it has to be assured that communication links are available
and local and remote test components are still"on duty" at the testing devices.

For example the resource time, one of the most important resources can not
be shared between two entities that do not reside on the same testing device.

64 TESTING OF COMMUNICATING SYSTEMS

Time synchronization needs to take place, where the following techniques could
be used:

• synchronization via the Low-Frequency transmitter of PTB or similar
institutions (DCF77) [7]

• synchronization via Global Positioning System [6]

• synchronization via Network Time Protocol [11].

In the following, we will concentrate on functional synchronization aspects.
Functional synchronization1 is needed to perform:

• test setup, maintenance and clearing

• test execution and

• test reporting.

Test setup is required to bring all involved entities, like communication
channels, testing devices, test components, etc. into a well defined state, so
that the test operator is able to execute the test. Possibly, a set of parameters
required for proper execution of a test suite have to be distributed to the test
components. The test execution is controlled via coordination messages such
as 'start test' and 'report test results'. After a test suite has been finished,
the testing devices and the communication channels have to release occupied
resources, so that the testing devices are able to perform another test session.
The process of gathering results produced by a test or a test campaign is denoted
by the term test reporting. A test operator can request traces produced by the
test components at the testing devices. This information has to be delivered to
the test operator using the desired granularity. Either all testing devices have
to report the traces, or only a specific one. The test result is considered to be
transmitted to the test operator via the notification of a completed test case. At
any stage during the test execution it has to be assured that all test components
are in a known and stable state.

2.1 OVERVIEW OF TSPl
ETSI MTS has defined the Test Synchronization Protocol 1 (TSPl) for

synchronization issues in distributed test setups [1]. The Architecture ofTSP1
is presented in Figure 2.

The purpose of the TSPl protocol is to achieve functional coordination and
time synchronization between two or more Test Synchronization Architectural
Elements (TSAEs). TSAEs are Front Ends (FE), Test Components (TC) and
the System Supervisor (SS). For example, in a multi-party testing method
(MPTM) according to [8], each lower tester can be defined by a single Parallel

Configuration and Execution Support for Distributed Tests 65

• IEciJ D internal/physical interfuces

Figure 2 Architecture of TSPI

Test Component (PTC) and the Lower Testing Control Function (LTCF) can be
specified by the Main Test Component (MTC). Coordination points between
the MTC and the PTC enable communication between the MTC and the PTCs.
With TSPl, the System Supervisor has the function of the Lower Tester Control
Function (LTCF) and each test component (TC) is a Lower Tester (LT).

Physical interfaces are used where the two communicating entities do not
reside on the same hardware. Mainly this will be the case between the System
Supervisor and the Front Ends and the case between the executable test com
ponents and the IUT. Internal interfaces will be used were the communicating
entities reside on the same hardware. In fact this is true between the Front End
and the Executable Test Component (ETCO). Normally, the Front End will
run as a server process on the testing device where the local Executable Test
Components also reside.

The exchange of Coordination Messages via Coordination Points (CP) as de
fined in an abstract test suite is managed via the Front Ends in conjunction with
the System Supervisor. Every executing test component needing to exchange
coordination messages with an other ETCO sends them to the Front End. The
Front End then forwards the CM to the System Supervisor if the message's
destination is an ETCO not controlled by the Front End. The System Super
visor then takes care of distributing the message to the right Executable Test
Component via the appropriate Front End. In fact, the complete test configu
ration and the distribution of the test components is only known to the System
Supervisor.

The functionality of the System Supervisor includes the management of the
test execution. It does not provide any support for implementing the necessary
configuration on the testing device. The test configuration, i.e. the distribution
and availability of testing devices must be known and identified in advance, and
set up manually or using a Telecommunication Management Network (TMN).
The System Supervisor (SS)

• manages the address table list of the test components, i.e. the mapping
between each test component and its FE,

66 TESTING OF COMMUNICATING SYSTEMS

Figure 3 Multi-Party Testing Method, [8]

• has routing capabilities towards the FEs,

• communicates with the FEs, and

• manages the test session.

The Front End has two functions. Firstly, it decodes and translates received
messages from the System Supervisor to the target testing device. Secondly,
it distributes only those messages which are destined for test components not
controlled by the Front End. If messages are received from a Test Component
local to the Front End and having as destination a Test Component controlled
by the same Front End, these messages stay local to the Front End, i.e. they
are not sent to the System Supervisor. The Front End has to

• have routing capabilities towards its Test Components;

• communicate with the SS, and to

• communicate with the testing device.

Executable Test Components are able to handle the test interfaces and are exe
cuting the (logical) test component. They operate in the environment provided
by the testing device.

2.2 THE IMPLEMENTATION OF TSPl
For implementing the Test Session Manager Timan on the basis of the

TSPl protocol, the library concept (see also Figure 4) is chosen as portability
TSPI was one of the implementation goals: A TSPl implementation, either
the System Supervisor or the Front Ends must be able to run on different
operating systems (OS). Additionally, a TSPl implementation should be able
to use different communication media and/or different transport mechanisms
for the communication between the System Supervisor and the Front Ends.
Intentionally, [1] does not d efine the communication services that should be

Configuration and Execution Support for Distributed Tests 67

used for carrying the TSPI PDUs as the choice of the service depends on
availability but also on performance requirements. The only requirement that
is formulated by [I] is that the underlying service provider shall be reliable. If
performance aspects have not the highest priority but low costs of test setup
are desired, TCP/IP connections might be chosen as transport layer if IP con
nectivity exists. If performance requirements have the highest priority, e.g.
running performance tests, an ATM connection or an ISDN connection are
more appropriate to provide the required service quality.

User Interface

"'"""'il f: Aduption L:tyer

u

ETCO = Execuu.ble Test Component

PTester = Protocol Tester

[CMI J External Interface (e.g. CMI)

Figure 4 TSPI Library structure

IUT

PCO = Point of Control
and Observation

JUT =Implementation
under Test

As monolithic solutions that incorporate communication services, adaption
to the testing devices, etc. are very inflexible, the TSPl protocol was, firstly,
split into a System Supervisor side and a Front End side and, secondly, only the
dynamic behaviour of the protocol was formulated in C. Well defined external
interfaces provide access to the TSPI library. The TSPI library can be written
without containing any OS or machine depended code. It has been designed
to be compilable at any ANSI C-capable OS. The TSPl library was already
successfully compiled on a SUN ULTRA 10 running Solaris 5.6 and a PC
running LINUX with the kernel version 2.0.35. On both systems the GNU
C-compiler (GCC, ver 2.8.1 (SUN) and ver. 2.7.2 (LINUX)) was used. The
interface at the system supervisor interface is depicted in Figure 5.

3. TEST SCRIPTING FOR EFFICIENT TEST
EXECUTION

Testing is a very time consuming process. Often it happens that test cases
fail where their successful execution is a prerequisite for other, depending test

68 TESTING OF COMMUNICATING SYSTEMS

cases. That means that other test cases have to fail, or at least come to an
inconclusive verdict if the prerequisite test cases fail. The execution of such
dependent test cases is most often a waste of resources and time.

Figure 5 Control Management Interface of Timan

Another aspect paid attention in testing is reusability of test cases, i.e. that
test cases might be reused in a context other than they were written primarily
for. For reusing a set of test cases (i.e. a test suite) a selection and regrouping of
appropriate test cases might be necessary. TTCN does not provided any means
for controlling the progress of a test campaign in dependence of test results of
already executed test cases. Only the dependence on static requirements, the
so called selection expressions, can be used to select and deselect test cases for
execution. Also, no means for different views (in terms of groups of test cases
and hierarchies of test groups) of a test suite are provided by TTCN.

Finally, TTCN does not support the assignment of verdicts to test groups,
which could be defined to be the accumulated verdicts of the contained test
cases and/or test groups. Hence, also the assignment of the overall verdict
to test suite execution in a test campaign is done in course of a subsequent
evaluation of the test case verdicts, rather than via a final calculation of the
verdicts of the top most test groups. In particular, there are no specified rules
how to interpret the individual test case verdicts with respect to the overall
test suite verdict, what opens the door to ambiguous and even contradicting
overall assessments of tested systems. In order to overcome these deficiencies,
a scripting language Test Session Specification Language (TSSL), will be
presented that accommodates the need for dynamic test selection and execution
and that enables the test suite to produce different views on the same set of test
cases by simply changing the associated TSSL script. The combined use of
TSSL and Timan leads to an increased grade of automated test execution and
to an improved support for the evaluation of test verdicts.

The use of TSSL is not limited to TTCN test suites, but its application to
TTCN is straightforward. TSSL is described subsequently in combination to
TTCN in order to ease the reading. TSSL is designed to reside on top of a test
suite, i.e. a TSSL script controls the execution of a TTCN test suite. TTCN is

Configuration and Execution Support for Distributed Tests 69

used to formulate the test cases, to group them and to define static requirements
like parameters. TSSL is an add-on to an existing test suite. It does not replace
the test suite or any concepts in the test suite, like selection expressions.

TSSL is based on the concept of GROUP objects which are constituted by
the test suite itself, test groups and test cases (which are singleton GROUP
objects). The latter two can be declared and modified. The test suite object is
implicitly instantiated when the script is executed.

A test session script, that is a script written in TSSL, consists of two parts.
A declaration part and a dynamic part, which define the dynamic behaviour of
the test session which is based on a test suite. The first declaration of a TSSL
script is the reference to the associated test suite. The import of a test suite has
two effects. At first, all test cases and groups defined in the test suite can be
referenced. Secondly, a predefined variable of type VERDICT, called verdict
is instantiated. An instance of a GROUP object has three attributes:

• [ref I list]

• verdict

An object is either defined by a reference to an existing group in the test suite
or by an explicit list of test groups/test cases. A reference to an existing group
references all test cases in this group in the order in which test cases appear
in the test suite (provided that they are selected due to their static selection
expressions). The list attribute can be used to group test cases or groups to
a new group not specified in the test suite for easier execution afterwards. In
verdict the actual test group verdict is stored. It it accessible from outside the
group, after the execution of the test group has finished.

Two methods are provided for GROUP variables. The first one is the
exec method (shorthand for execute). The method is run if the test group is
executed. Inside the execute method, individual test cases can be executed, the
group verdict can be set, and decision and loop constructs enable the granular
application of execution and verdict assignment. For example, a group verdict
should only be set to PASS if all test cases in the group have been successfully
executed a defined number of times. Also, the selection and execution of
other test cases based on the result of previously executed test cases can be
performed. If no execute method is defined a default execute method applies,
i.e. every selected test case in the group will be executed. The group verdict
will be calculated according the TTCN rules for a verdict assignment. The
verdict can get only "worse", not better.

The second method that can be defined for a GROUP object is the eva!
method (shorthand for evaluate). This method defines a rule that will be
evaluated after each and every executed test case of the group. Depending on
the conditions in eva!, the execution of the group can be aborted. Using this
possibility, the test effort can be reduced as not every possible executable test
case needs to be executed. Maybe, the execution of every test case might be
not desirable if more than say for example 75% percent of the executable test

70 TESTING OF COMMUNICATING SYSTEMS

cases of a group have already failed. TSSL has a loop and a decision construct.
They can be used to control the test group and test case execution in either from
the main level (i.e. for the test suite) or in the exec method of a GROUP object.
A .. decision can be constructed with an if .. else expression, a loop using a while
style construct. Boolean expressions in a decisions and loops can consist of
relations between the standard data types and verdict attributes. Two different
types of functions can be used to control the execution of a TSSL script:

• execution of an object

• gathering of information about an object

An object is executed by use of its exec methods and yields its verdict attribute.
If an object has no explicit exec methods, the default behaviour applies, which
is to execute every test case within this group where the selection expressions
hold, and where the test case was not executed before.

In a given exec method, each test case to be executed is named explicitly and
will be executed despite of the verdict it has. If the test suite designer wants to
avoid the repeated execution of a test case he can check the test case verdict.
The exec method of a test group containing other test groups has to execute
each test case of the contained groups explicitly if the groups are included by
reference. Only if a test group is included by a test group variable and not by a
reference it can be executed according to the test groups exec method. If every
test case of a test group is deselected by its selection expressions, a NONE
verdict is returned.

The attribute verdict of an object returns the basic information of an object,
its verdict. Other functions exist that give a more abstract view on a GROUP
object:

• count_tc

• count_verdict

• r_counLverdict

The function count_tc returns the number of test cases in an object. The
count-verdict function return the number of test cases having the specified
(i.e.different to NONE) verdict. The function r_count_verdict returns the
percentage of test cases in an object having a specified verdict. As basis for the
calculation either all test cases in an object can be used or only test cases whose
selection expression hold. The default basis for calculation are the selected test
cases.

4. TINA PLATFORM UNDER TEST
This section describes the TINA platform implementation [3] which was

the system under test outlined in this paper. The platform was designed ac
cording to the TINA architecture and consists in principal of access session

Configuration and Execution Support for Distributed Tests 71

and subscription components. They are implemented in C++ and run under
Windows NT 4.0. The communication between the distributed components is
done by means of CORBA mechanisms which are provided by Visibroker 3.2.
The following subsections describe the structure of the implementation of both
components and their environment in more detail.

4.1 ACCESS SESSION AND SUBSCRIPTION
The access session component is of major concern in this paper. It is

forming one process running on Windows NT and consists of implementa
tions for the computational objects defined in the TINA architecture like Initial
Agent (lA) and User Agent (UA). That means there is a decomposition of
these objects in several C++ class declarations and definitions. Furthermore
these computational objects are supporting interfaces according to the Re
tailer Reference Point (RET-RP) defined by TINA-C like LR.etailerlnital and
LRetailerNamedAccess as well as proprietary interfaces which are used inter
nally (see figure). In order to fulfil its task the access session needs information
from subscription. Therefore another process is running on the same node
containing the subscription component. It contains implementation for several
computational objects whereas one of them the Subscription Coordinator (SC)
is of main interest for the access session. It supports an interface which provides
all the necessary information to the access session. Subscription itself retrieves
these information from an object-oriented database realized with Versant.

4.2 ENVIRONMENT
In order to make some interface references from subscription known to the

access session and known to the test component a CORBA Naming Service
(NS) has to be executed. In the relevant test configuration the NS coming with
Visibroker for C++ 3.2 was used. It is running on the same node like the other
components under test. The access session uses another component (UADB)
to get access to the already mentioned object-oriented database, where all user
information are stored. This component runs in a separate process on the same
node and is also implemented in C++. Figure 6 shows the configuration of the
platform.

As a precondition for the whole platform the Visibroker 3.2 Smart Agent
has to run on the node as well as the Versant demon to use the database which
also runs on the same node. This is not depicted in the figure.

Testing distributed applications encompasses two steps:

• In a first step the functional aspects of the system under test is verified,
i.e. it is checked whether the system behaves in the target environment
like expected and whether it is conform to reference points.

72 TESTING OF COMMUNICATING SYSTEMS

Ret-RP

...... • • • ... COREl A Co1MitnC•IIMI

Figure 6 Configuration of the TINA Platform under Test

• Once the conformance of the system under test is checked, performance
and robustness tests can be performed to determine whether the system
also behaves correct under load.

The conformance tests for the TINA platform under test have been made
first, the performance tests in a second step. This papers describes in more
detail the use of TSSL for the efficient execution of the conformance tests, the
performance tests and their results are described in [15].

Figure 7 depicts the test behaviour as a Message Sequence Chart (MSC)
diagram in parallel to the following description:

The test component (TC) resolves a name context at the NS to retrieve
the interface reference (i_Retailerlnitial interface) to the Initial Agent
(lA).

2 This interface reference is used to call the requestNamedAccess operation
at that interface. The parameter userld has the value anonymous, the
password is an empty string. This operation request causes the lA to
initiate a database request to the UADB object to get some properties for
that user (userDescription) . In the case that the userld is anonymous the
lA instantiates a new User Agent (UA), initializes the UA with the user
description and returns the interface reference (i.RetailerNamedAccess
interface) of the UA to the TC. In its initialization phase the User Agent
resolves a name context at the NS to retrieve the interface reference to
the Subscription Coordinator (SC).

Configuration and Execution Support for Distributed Tests 73

MSC TesLCase_Behavior

TC NS lA sc UAOB

~- callo_..t..,m ,....,._,oqu~ ""'· pua"""')

I i rr~=·;::.;.~c-~:.::::::~::;=::::::.;::;r·_.,_=~'-:"'·,=~:·=~>=."'~:;:l'dl"'~-. .o-_-~-!-"'l-""'··_~) •

li call< a •- I ! 1
..r."!!'~te-'•l"ns.! 'L ____ .,.:_ i

[I, ""'.'!"~m_!d~ "!':'~'ll"-".!'l
~- .. 1J: .. u .. .con.. ._.,, ... oe.c

I)._ ---- ----- -•!! "!~~~L.P.!Y
~-- -~ coli lbl.........,. S.ov""'-'""""''

i
i
!

iliocll-- ____ ~ ~u~~-~ a -!!I~(!-~•!)

~ _ -, , coli l~l!!_oqulo · .,. oqua>I(,.Mea

~ ~f!~i!._ad_S tv~eot...! a"fiS~U.f-~U_RU

~]-lit' "'"Soov<o •~•"(,.Mea)
~ ~ $1"'<;!, tvlce_uc::eption1S ~o~....aunavallllbte\ I r ____ .:·-,: ----- .,.,., __ ___ •. -.......

Figure 7 The behaviour of the example test case

74 TESTING OF COMMUNICATING SYSTEMS

3 The TC calls the operation setUserContext at the LRetailerNamedAccess
interface.

4 In order to retrieve the available services for that anonymous user the TC
calls the operation listSubscribedServices at the LRetailerNamedAccess
interface. Then the UA sends the request listOfAuthorizedServices to
the SC which provides the information with the help of the underlying
database back to the UA. The UA replies the list back to the TC.

5 The TC which acts like a Provider Agent in the TINA architecture needs
some information about the service specific user application of the se
lected service in order to start the service. Therefore it calls the oper
ation listRequiredServiceComponent. This causes the UA to send the
request getLoaderlnfo to the SC which retrieves this information from
the database. In the current implementation this information consists of
an URL to a JAVA applet which implements the service specific user
application.

6 After the TC has got the information about the service specific user
application it calls the startService operation for the selected service.
Since no service is running on the platform the UA responds with a
ServiceUnavailable exception.

The test cases make use of PTCs which describe the test behaviour with
respect to the individual interfaces of NS, lA, and UA. Timan is used to setup
and parameterize the executable test components in the distributed test setup.

The test cases for Figure 7 are defined step-wise so that every test case
makes use of test cases which reflects the preceding operation requests. For
example, the test case for RequestNamedAccess makes use of the test case for
Resolve _Request. This makes the usefulness of test case execution depending
on the success of the respective preceding test cases, what is reflected in the
TSSL script given in Figure 8.

5. CONCLUSION
The presented paper investigated the synchronization of parallel and dis

tributed test components in order to obtain means for the synchronization of
distributed test components. There is no standardized framework for distributed
testing, however different testing techniques such as conformance testing, per
formance and interoperability testing require in general distributed test setups
for testing distributed systems. The time and functional synchronization of
distributed test components are still only partially covered issue in research.
The main focus is on functional synchronization of distributed testing com
ponents. The test synchronization protocol TSPl was described, its relevance

Configuration and Execution Support for Distributed Tests 75

Basic_capabilities_Access_Session = {
IMPORT "AS_Tests";
GROUP InitTest, AccessTest, ServiceStartTest, ... ;
TESTCASE Resolve_Request, RequestNamedAccess, SetUserContext, ... ,
INTEGER tries;
Resolve_Request.ref = "AS_Tests/GENERAL/Init_Service/Valid/UO";
RequestNamedAccess.ref = "AS_Tests/GENERAL/Init_Service/Valid/U1";
SetUserContext.ref = "AS_Tests/GENERAL/Init_Service/Valid/U2";

InitTest.1ist = { Resolve_Request };
AccessTest.list = { RequestNamedAccess, SetUserContext, ... };
ServiceStartTest.list= { InitTest, AccessTest };
ServiceStartTest.exec{)
{

if(InitTest.exec ())
if (AccessTest.exec()) verdict= PASS;
else (verdict = FAIL; break; }

else (verdict = FAIL; break; }
};

main () {
tries = 1;
/* tries 10 times service setup */
while((ServiceStartTest.verdict) && tries=< 10)
{

if (NOT ServiceStartTest.exec())
{ verdict = FAIL; break; }
tries tries + 1;

verdict = PASS;
}

Figure 8 The Example TSSL Script

to distributed testing and the testing notation TICN was analysed. The Test
Session Manager Timan, which is based on TSPl, has been described.

Testing might be a time consuming process. In distributed testing, the
optimization of testing time is especially desired as connections have to be
maintained for the synchronization of the distributed test components and test
personal have to operate at the remote site. Therefore, a careful selection of
test cases that have to be executed has to be done. As no standardized notation
for specifying the dynamic test case selection exists, a test session specification
language TSSL was presented.

The usage and application of Timan and TSSL are demonstrated for an ex
emplarily test for a TINA Access Session implementation. The use of test setup
and synchronization features of Timan to the conformance tests of the TINA
Access Session eased the test execution. Timan's features are of particular
importance for repeated test executions as in e.g. regression tests. Due to the
small number of test cases for the Access Session, the performance gain in
test execution from the TSSL script was not that high, but the script helped to
control the test execution. The test suite as well as the scripts will be further
extended in order to investigate the applicability, usefulness and efficiency of
scripting techniques in distributed test executions. The translation of a TSSL

76 TESTING OF COMMUNICATING SYSTEMS

script into a target language has still to be performed by hand. Automated
support for the use of TSSL is proposed. Incorporating a TSSL interpreter into
the presented test session manager TTman will increase the usability of TSSL.

Notes
I. The fact that the coordination message exchange may cross the boundaries of a single tester requires

internetworking between the single testers. Reliability of the internetwork is assumed.

References
[I] ETSI TC-MTS: Methods for Testing and Specification (MTS); Test Synchronization; Ar

chitectural reference; Test Synchronization Protocol I (TSP I) specification, ETSI Tech
nical Report ETR 303, Sophia Antipolis, January 1997.

[2] Farley, P.; Hogg, S.; Kristiansen, L. et al.: Ret Reference Point Specifications, Snapshot I,
Version 0.4, TINA-Consortium, May 14, 1997.

[3] Project "TINA Platform" by GMD FOKUS/Deutsche Telekom Berkom,
http://www.fokus.gmd.de/research/cc/platin/projects/, 1998.

[4] TINA-C: Service Architecture Version 4.0, Oct. 1996.

[5] Eurescom Project 412: Methodology and Tools For ISDN Network Integration and Traffic
Route Testing, Deliverable 3, Test Specifications for ISDN Network Integration Testing,
EURESCOM, Heidelberg, August 1996.

[6] Global Positioning System Standard Positioning Service Signal Specification, Second Edi
tion, U.S. Department of Defense at the U.S. Coast Guard Navigation Center, Alexandria,
VA, June 1995.

[7] Hetzel, P.: Zeitinformation und Normalfrequenz von der PTB > Ober den Telekom
Langwellensender DCF77, telekom praxis, Heft I, 1993, pp. 25-36.

[8] ISO/IEC 9646: Information technology - Open systems interconnection - Coriformance
testing methodology and framework, International Standard, Geneva,l991.

[9] ISO/IEC 9646-3: Information technology- Open Systems Interconnection- Conformance
testing methodology and framework - Part3: The Tree and Tabular Combined Notation,
International Standard, Second Edition, Geneva, 1997.

[II] RFC 1305 (Mills, D. L.): Network Time Protocol (Version 3) Specification, Implementation
and Analysis, DARPA Network, University of Delaware, March 1992.

[12] Ousterhout, J.K.: Tel and the Tk Toolkit, Addison-Wesley, Aprill994.

[13] ITU-T Z.l 00: CCITT specification and description language (SDL), ITU-T Recommen
dation, Geneva, March 1993.

[14] ITU-T Z.l20: Message Sequence Chart (MSC), ITU-T Recommendation, Geneva, 1996.

[15] Born, M.; Hoffmann, A.; Winkler, M.; Schieferdecker, 1.; Vassiliou-Gioles, Th.: Per
formance Testing of a TINA Platform. - Accepted to Appear in TINA'99, Hawai, May
1999.

